Thursday, October 23, 2014

A Time When I Directly Told


We’re studying data in my third grade class. My students as a whole came in with vague notions of the meaning of data (“it’s information”) and some kids were confused as to what this all has to do with math anyway. On an initial dataset, kids mostly categorized things by their superficial features (“restaurants go together”) instead of grouping data more purposely in order to answer particular questions. Their descriptive language was mostly limited to “most” and “least”, and the questions they posed reflected that.

OK, that’s the preamble.

The main task today related to a survey that we took of our class. The survey was titled “Places where we like to...”, and we collected information about where everybody in the class likes to do various things. So: “Places where we like to read.” “Places where we like to visit.” “Places where we like to eat.” etc.*

* (The full lesson plan is here, at the bottom of the piece.)

Anyway, a pair of kids were organizing the class’ data on “Places where we like to read.” This was the data set they were organizing:
  • School
  • In my room, in bed
  • Public library
  • Home, in bed
  • Library
  • In the living room in my house
  • My bed
  • bed
  • Home
  • Home
  • Home
  • In my bed with the puppy
When I came over, they had organized all the data points into two categories. They had the data on little cards, and these were their groupings:

Group 1:
  • School
  • Public library
  • library 
Group 2:
  • In my room, in bed
  • Home, in bed
  • In the living room in my house
  • My bed
  • bed
  • Home
  • Home
  • Home
  • In my bed with the puppy
I asked the pair, “What are your categories?”

“This one [on the left] are places for education.”

I was excited by this, because up until this point it had been very difficult for the students to see any other possible organizations of the data that didn’t just categorize their surface features. Actually, this was their second attempt at organizing the dataset, and their first had been fairly typical: all the “home” was grouped together, all the “bed”s were grouped together, “school” was alone, “library”s were together, etc.

In other words, I thought that I was watching a moment of learning, where the kids saw what we mean by organizing data to answer different questions.

So, I continued probing: “Got it. And what’s the other category?” I pointed to the right grouping.

Student A: “This cateogry is in my room, in bed, and also in the living room...”

Student B: “In home, a bunch are in home...”
The kids continued to trip over each other in an attempt to fully characterize their second category. I saw this as evidence that they recognized the insufficiency of their categorization, but lacked the language to properly describe it.

This, I recognized, was a perfect opportunity to tell them something.

I said: “Oh, so this category on the left are the places where education happens. And this, on the right, these are not places of education.”

Student A: “Yeah like a home or ...”

I continued: “So you might say that this category is places of education, and this category is places of non-education. Did I get your categorization right?”

The kids nodded. One of them repeated the categories using this new language, and then later used it when I brought the class over to look at the categorization that this pair had made.

I think this was a time when directly telling was able to cause learning. I’d generalize this by saying that when kids are searching for a term and can’t find it, that’s an opportunity for causing learning by directly telling. I’d also argue that you can cause learning by engineering these sorts of moments.

Questions:
  1. Do you think the language of "direct telling" is appropriate for 
  2. Are you convinced that this was an appropriate time for direct telling?
  3. What parts of this post helped you feel like I wasn't bamboozling you in my representation of what happened in class? 
  4. Were there moments while reading when you found yourself wishing you could have seen this moment? Where in the post were those moments?

Wednesday, October 22, 2014

How To Not Quit Teaching

Thinking of leaving teaching? Here are some posts to get you started:
Read them all, and you'll find yourself with many arguments for leaving classroom teaching. But what if you want to settle your doubts and stay? What's helpful for getting past this sort of angst, besides leaving?

These days, I'm feeling pretty good about classroom teaching as a long-term gig. Personally, I found it helpful to interrogate some of the assumptions behind my earlier angst about teaching. Here are a few disorganized, stray thoughts that came out of my reflection:
  • All my angst was premised on the attractiveness of classroom teaching. I wanted to teach. 
  • I realized that, right now, I have enough money. If I was careful, I could probably continue to have enough money. My angst wasn't premised on concern for material well-being.
  • Mansions are cool, but drafty in the winter and I can hardly keep track of my keys as is.
  • The amount that a profession gets paid is confusing. What does it mean to say that a certain job is overpaid or underpaid? Do I deserve to make more than a nurse? Than a secretary? As much as a doctor? 
  • Teaching is a profession that is currently and historically dominated by women. A lot of the teacher-administrator relationship is premised on the idea that women should be accountable to men.
  • Eventually, I concluded that the way I felt about teaching was the way women often felt at work.
  • Fundamentally, I like learning and challenges. No one is stopping me from figuring out how to keep learning about teaching. I can direct my own learning and set my own challenges. 
  • The problems that I have in teaching, then, are the problems that I would have in any profession. If I were a doctor, I'd need to figure out how to keep learning in the face of comfort. If I were an educational researcher, I would need to figure out how to direct my own learning.
  • In that case, I had better figure out how to direct my own learning.
I propose that, from the standpoint of current classroom teachers, it's more productive to think of how to guide one's own learning than to worry about the state of the profession.*

This isn't to say that it's illegitimate to worry about the state of the profession. Activism is cool. So is being informed. All I'm saying is that "OMG THE SKY IS FALLING AND TEACHING HAS NEVER BEEN WORSE" isn't a particularly helpful perspective for me to dwell on, because I have/want to be a classroom teacher.

Update: More "I quit!" posts.

Sunday, October 12, 2014

Thinking Through a Decision: Tom and Addition

The Class, The Kid, The Activity:

I'm going to share with you a situation from my 3rd Grade class and a decision that I made. Then, I'm going to ask you what you'd do in this situation.

This post comes with a question and a meta-question. The question is, "What's the right teaching decision?" The meta-question is, "How much context needs to be shared so that we can ask useful teaching questions?"

I'll attempt to provide context at three levels: about the class that I'm teaching, about the kid that I want to focus on, and about his work on a particular activity.*

* I'm unsure how important school context is to this. Briefly: I currently teach at Saint Ann's School, a private school with competitive admissions in New York City.

The Class: 3rd Grade Math

My 3rd Grade class has 11 students. My school has about eighty 3rd Grade students, and about half of them are in a "fast-paced" track and half of them are in a "regular-paced" track. This class is a regular-paced class. We meet less often that most math classes meet: 4 times a week, 35 minutes a day.

We've been studying addition for the first five weeks of school as part of our first major unit. (I have lots and lots of curricular freedom, but I've elected to mostly use the TERC Investigations activities so far.)

Here's a sample of some of the work that we've been doing in class over the past few weeks.




In addition to our main activities, we've often been starting our sessions with number talks aimed at helping students build a greater facility with efficient mental addition.

The Kid: Tom

Tom is a 3rd Grader. (Tom is not his real name, but privacy etc.) Tom has worked slower than other students in class on most problems that we've done this year. I randomly call on students fairly often, and when Tom's name gets picked he often struggles to articulate a line of reasoning.

On independent work, Tom works slowly but carefully. He often articulates his reasoning clearly using equations. Here's a sample of Tom's independent work.



Tom has had moments of great thoughtfulness over the first few weeks of school, and it's been fun to watch him make progress. In sharing his reasoning he sometimes makes mistakes ("65 cents and 25 cents makes a dollar") but when given a chance to slowly think it through he's able to improve his thinking ("No that can't be right because 65 and 20 make 85 and 85 and 5 make 10...")

Another nice moment from Tom: he solved 27 + 8 mentally by breaking 8 into 3 + 5 and "making a 10" with 27 and 3.

In short: Tom uses a variety of strategies quite well, but his addition is inefficient and error-prone.

The Activity: Formative Assessment for Addition 

After a few days of some rich and interesting number talks, I wanted to know what addition facts my students still struggled with so that I could properly steer things in the next week. I knew that a few of my kids, including Tom, still struggled with mental addition, but I didn't have a good understanding of the types of problems that they struggled with. To assess which addition facts my kids "just knew" and which they had to figure out, and also whether they could figure them out, I decided to give my class 33 addition questions and ask them to work on them alone.

Knowing that these sorts of activities sometimes cause anxiety in students, I was careful in how I framed the activity for kids. I didn't tell them that the activity was timed. I took care to make sure that there was another activity ready for students who chose to move quickly that they could silently access. I also made it clear that I expected there to be questions that they didn't "just know."

Here's a video of how I introduced the activity.



Here's Tom's work on this activity.



(About the stars: instructions to the class were to "start with the ones that you 'just know' and put a star next to any that you need to think more carefully about, and then work on those. By the time I noticed that Tom wasn't returning to the ones he skipped, I decided that this would be helpful information anyway and there was no need to have him work on these problems. That might have been a mistake.)

I noticed that Tom has very little problem with adding 9's. Knowing his sometimes-facility with certain addition strategies (and his lack of quick recall of addition facts in general) I think that Tom is reasoning relationally here, e.g. 9 + 7 = 10 + 7 - 1. This is nice.

I noticed that Tom skipped lots of questions that involve adding 8 or 7. I noticed that he didn't "just know" 3 + 7, which might have been a useful fact for figuring out 7 + 6 or a lot of the other 7's.

Tom's work wasn't typical of the class'. Most students slowly, but accurately, answered all the questions. Casie's work (below) was more typical of the class. (The rest of the class' work is here.)


The Question and a Decision:

I've had students like Tom in every class I've ever taught. How do I help Tom while still pushing the rest of the class forward?

After thinking things through, here's what I decided:
  • It seems to me that Tom could use some more strategies. In particular, there's a handful of additions that he could know very quickly if he started seeing 6+7 and 8+7 as "near doubles." 
  • Tom could also answer a lot of the problems that he missed using a "make 10" strategy. But in whole-class situations he's already used this strategy. Why didn't he use it on this assessment? He might just not have made the connection, or he might not "just know" the numbers that combine to make 10. (He missed 3+7 on the assessment.) I also think that "make 10" requires you to hold a bunch of numbers in your head, and that this strategy tends to be more cognitively demanding than other strategies. He might not be ready for it yet.
  • Tom needs a chance to rethink the questions that he didn't get and make it an explicit goal to improve on them. Here's how I'll do it: I'll do a number talk that makes some of the useful strategies explicit, then I'll return their assessment work and ask them to work on any of the questions that they skipped or found difficult. I'll suggest that they use some of the strategies that were just discussed. (An issue is that many kids won't have any problems to work on, and I don't want to draw a distinction between those who do and those who don't. I'll mitigate this by giving everyone their work to improve and a follow up assignment that they'll work on individually and silently.)
  • Over the next few weeks I need to give Tom an opportunity to practice and learn some of these additions that he struggled with. I'll do this mostly in the context of number talks, because these are easily differentiable. I can put four problems on the board that increase in difficulty, and ask students to mentally work on all four. This could give Tom a chance to practice "6+8" while giving Casie a chance to try "46+68" in her head.
I'll want to check back in a few weeks to see what sort of progress Tom (and others) have made.

In Conclusion:
  1. What here would you do differently?
  2. Should I be giving more individual feedback to Tom? How would you give it?
  3. Why else might Tom be having trouble here, besides for the ideas that I suggested?
  4. Missing from all this is the social aspect -- how Tom interacts with other students in class. How do you think I could represent this?
  5. Oftentimes I'm unconvinced by a piece of writing about teaching because I worry that it's an unfaithful representation of the classroom. Do you feel convinced that this representation of my class is faithful?