What am I missing here? Point me to your favorite trigonometry resources in the comments.

[Last Updated: 4/5/2012]

**The Hard Parts**

Part of what makes this unit challenging for me is that students may or may not come in knowing the right triangle trigonometry definitions of sine and cosine. Some teachers like to start with the right triangle definitions and expand them to all real numbers. Because I know that I can't rely on my kids remembering the old definitions, my solution is typically to offer a fresh start with the circular definitions of the trig functions, and then later tie them back in to right triangle definitions.

What I like about trigonometry is that so much of it can be connected to one central model -- the unit circle. This is empowering. But kids had better know their unit circle stuff, and so kids really need a firm grasp of the unit circle by the end of the unit.

**Resources**

This song goes first. It's fun:

Kate and Riley both have good starting points for the beginning of this unit, but my understanding is that they start with the right triangle definitions of sin, cos, and tan. I don't like to start there for two reasons. First, because my students usually don't remember those definitions. Second, because I'd rather give them a clean foundation and connect it to the right triangle definitions later.

I detailed my preferred starting point in a post:.

In general, I like the worksheets and implied approach of the eMathematics textbook. I use their worksheets on angles and rotation terminology after I've reviewed the equations of circles with my classes. You can find them at the link below, though everything from their Lesson #6 and on I consider part of my next unit, on graphing the trig functions.

I don't know where I first saw that the tangent function is the slope of a radius in the unit circle. I never learned it that way, but it makes so much sense to me and my kids than just defining tan directly in terms of sin and cos.

Here's a full course through problem sets. I haven't looked through it carefully yet, but it looks good:

Oh yeah, radians. And if you're in NY, arc length. I spend a day converting unit with my kids, and radians <---> degrees is an application of converting units. Sometimes I use this not-so-great resource that I made that just contains some goofy units of measurement to shake kids out of their comfort zone.

I'm torn as far as converting units is concerned. On the one hand, there's a procedure for converting units which can help you convert when you don't have an intuition for the relative sizes of the units. At the same time, gaining intuitions about the relative sizes of units is helpful. So my approach with radians/degrees is to both things. First I try to move them out of their zone of intuitions with an activity, and then they calculate "about how many degrees are in a radian?" to give them intuitions. I've also found that kids in my classes get confused about radians. They say things like "The unit circle has 2 radians" as opposed to "2 pi radians." What I've learned to do is ask them to estimate the number of radians as around 6, and ask them to make back-of-the-envelope calculation with that number, and then use pi for the more precise calculations.

Also, I teach arch length as a proportion problem. Meaning, what percentage of the circle is 2 radians? If the radius is 5, what will the circumference of the full circle be? What percentage of the circumference are we looking for? I know that's probably a no-brainer for a lot of you, but I had trouble coming to that approach.